Autor: |
Othman, N. A. F., Selambakkannu, S., Azian, H., Ratnam, C. T., Yamanobe, T., Hoshina, H., Seko, N. |
Předmět: |
|
Zdroj: |
Polymer Bulletin; 2021, Vol. 78 Issue 1, p165-183, 19p |
Abstrakt: |
A fibrous surface ion-imprinted polymer (IIP) was synthesized for thorium removal through direct electron beam radiation using thorium as a template. Polypropylene coated by polyethylene non-woven fabrics (PE/PP) was used as a substrate. The PE/PP non-woven fabrics were irradiated in the presence of the phosphoric monomer (2-HMPA) composed of 2-hydroxyethyl methacrylic phosphoric acid diester (50%) and monoester (50%) emulsified with the crosslinker. Hence, the formation of the three-dimensional IIP-Th crosslinked network and complexation between thorium (template) and 2-HMPA was investigated. The emulsion stability and particle size distribution of emulsion were determined using dynamic light scattering (DLS). Various factors influencing the synthesis of the thorium ion-imprinted (Th-IIP) non-woven PE/PP such as the absorbed radiation dose, monomer concentration, and type of crosslinker were investigated. The IIP-Th was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy–energy-dispersive X-ray (SEM–EDX), and X-ray photoelectron spectroscopy (XPS) and applied as an adsorbent for the removal of thorium using the batch adsorption method. The IIP-Th achieved a maximum distribution coefficient of 3.293 g/L and selectivity ratio (Th(IV)/U(VI)) of 9.5 after 90 min of contact time under acidic conditions. The adsorption kinetics of IIP-Th followed the pseudo-second-order kinetic model for both Th(IV) adsorption and U(VI) adsorption. The synthesized fibrous surface ion-imprinted polymer is a promising candidate for the selective removal of thorium ions from aqueous solution. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|