Autor: |
Khan, M. A., Pasco, C., Reynolds, N., Kendall, K. |
Zdroj: |
International Journal of Material Forming; 2021, Vol. 14 Issue 1, p133-142, 10p |
Abstrakt: |
Formability of a continuous fiber-reinforced material is known to be influenced by its intraply shear behavior. This study investigates a 2 × 2 twill weave carbon fabric and the corresponding vinyl-based thermoset prepreg developed for press-cured structural parts. Intraply shear tests of bias-extension and picture-frame were conducted for a range of industrial-relevant processing conditions of temperature and shear rate. The dry fabric was characterized similar to the prepreg to isolate the influence of semi-cured resin on the woven prepreg fabric formability in shear. The shear deformation behavior of the prepreg, usually dependent on the fabric architecture, is found to be controlled by the state of the resin. The results clearly show the significance of the choice of process parameters on the prepreg shear behavior. It is demonstrated that preheating the prepreg to temperatures considerably lower than required to initiate cure can make the shear formability of the woven prepreg equivalent to the constituent (dry) reinforcement fabric. The actual shear angle measurement during the bias-extension tests demonstrates the level of inter-tow slippage for the prepreg fabric at relatively elevated temperatures. The comparison of normalized shear data from the two test methods helps to determine the improved procedure for prepreg fabric testing. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|