A Quantitative Digital Subtraction Angiography Technique for Characterizing Reduction in Hepatic Arterial Blood Flow During Transarterial Embolization.

Autor: Periyasamy, Sarvesh, Hoffman, Carson A., Longhurst, Colin, Schefelker, Georgia C., Ozkan, Orhan S., Speidel, Michael A., Laeseke, Paul F.
Předmět:
Zdroj: CardioVascular & Interventional Radiology; Feb2021, Vol. 44 Issue 2, p310-317, 8p
Abstrakt: Objective: There is no standardized and objective method for determining the optimal treatment endpoint (sub-stasis) during transarterial embolization. The objective of this study was to demonstrate the feasibility of using a quantitative digital subtraction angiography (qDSA) technique to characterize intra-procedural changes in hepatic arterial blood flow velocity in response to transarterial embolization in an in vivo porcine model. Materials and Methods: Eight domestic swine underwent bland transarterial embolizations to partial- and sub-stasis angiographic endpoints with intraprocedural DSA acquisitions. Embolized lobes were assessed on histopathology for ischemic damage and tissue embolic particle density. Analysis of target vessels used qDSA and a commercially available color-coded DSA (ccDSA) tool to calculate blood flow velocities and time-to-peak, respectively. Results: Blood flow velocities calculated using qDSA showed a statistically significant difference (p < 0.01) between partial- and sub-stasis endpoints, whereas time-to-peak calculated using ccDSA did not show a significant difference. During the course of embolizations, the average correlation with volume of particles delivered was larger for qDSA (− 0.86) than ccDSA (0.36). There was a statistically smaller mean squared error (p < 0.01) and larger coefficient of determination (p < 0.01) for qDSA compared to ccDSA. On pathology, the degree of embolization as calculated by qDSA had a moderate, positive correlation (p < 0.01) with the tissue embolic particle density of ischemic regions within the embolized lobe. Conclusions: qDSA was able to quantitatively discriminate angiographic embolization endpoints and, compared to a commercially available ccDSA method, improve intra-procedural characterization of blood flow changes. Additionally, the qDSA endpoints correlated with tissue-level changes. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index