Autor: |
Akomolafe, Seun F., Olasehinde, Tosin A., Adewale, Omowumi O., Ajayi, Olubunmi B. |
Zdroj: |
Biological Trace Element Research; 2021, Vol. 199 Issue 1, p197-204, 8p |
Abstrakt: |
The protective effect of curcumin on potassium bromate (KBrO3)–induced renal damage was investigated in vivo. Treatment with KBrO3 (20 mg/kg bw) caused a significant increase in arginase and adenosine deaminase (ADA) activities in rats' kidney. However, oral administration of curcumin (20 mg/kg bw) caused a significant reduction in ADA and arginase activities in KBrO3 + CUR group. Furthermore, nitric oxide level was significantly low in KBrO3 group compared with the control. After treatment with curcumin in KBrO3 + CUR group, nitric oxide levels increased significantly (P < 0.05). Determination of some kidney biomarkers revealed elevated levels of creatinine, serum urea, and electrolytes (Na+ and Cl−) in KBrO3-treated rats. Curcumin effectively reduced the levels of these renal function parameters in KBrO3 + CUR groups and were not significantly different from the control. Antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities as well as glutathione (GSH) levels were significantly low with concomitant higher levels of malondialdehyde (MDA) after treatment with KBrO3. Curcumin caused a significant increase in SOD, CAT, and GPX activities including GSH levels with lower production of MDA in kidney homogenates of rats in KBrO3 + CUR. Curcumin ameliorated corpuscular degeneration in the kidney tissue and exhibited protection against tubular necrosis. These results revealed the protective effect of curcumin against KBrO3-induced renal toxicity by preventing degradation of ADA and arginine, improving antioxidant status and histopathological changes in rats' kidney. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|