WILD RAMIFICATION IN TRINOMIAL EXTENSIONS AND GALOIS GROUPS.
Autor: | BENSEBAA, BOUALEM, MOVAHHEDI, ABBAS, SALINIER, ALAIN |
---|---|
Předmět: | |
Zdroj: | Glasgow Mathematical Journal; Jan2021, Vol. 63 Issue 1, p106-120, 15p |
Abstrakt: | It is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |