Sliding Bifurcations in the Memristive Murali–Lakshmanan–Chua Circuit and the Memristive Driven Chua Oscillator.

Autor: Ahamed, A. Ishaq, Lakshmanan, M.
Předmět:
Zdroj: International Journal of Bifurcation & Chaos in Applied Sciences & Engineering; Nov2020, Vol. 30 Issue 14, pN.PAG-N.PAG, 18p
Abstrakt: In this paper, we report the occurrence of sliding bifurcations admitted by the memristive Murali–Lakshmanan–Chua circuit [Ishaq & Lakshmanan, 2013] and the memristive driven Chua oscillator [Ishaq et al., 2011]. Both of these circuits have a flux-controlled active memristor designed by the authors in 2011, as their nonlinear element. The three-segment piecewise-linear characteristic of this memristor bestows on the circuits two discontinuity boundaries, dividing their phase spaces into three subregions. For proper choice of parameters, these circuits take on a degree of smoothness equal to one at each of their two discontinuities, thereby causing them to behave as Filippov systems. Sliding bifurcations, which are characteristic of Filippov systems, arise when the periodic orbits in each of the subregions, interact with the discontinuity boundaries, giving rise to many interesting dynamical phenomena. The numerical simulations are carried out after incorporating proper zero time discontinuity mapping (ZDM) corrections. These are found to agree well with the experimental observations which we report here appropriately. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index