Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model.

Autor: Stoeckli, Sibylle, Felber, Raphael, Haye, Tim
Předmět:
Zdroj: International Journal of Biometeorology; Dec2020, Vol. 64 Issue 12, p2019-2032, 14p
Abstrakt: Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index