Carbon storage in phosphorus limited grasslands may decline in response to elevated nitrogen deposition: a long term field manipulation and modelling study.

Autor: Taylor, Christopher R., Janes-Bassett, Victoria, Phoenix, Gareth, Keane, Ben, Hartley, Iain P., Davies, Jessica A. C.
Předmět:
Zdroj: Biogeosciences Discussions; 11/9/2020, p1-37, 37p
Abstrakt: In many temperate ecosystems, nitrogen (N) limits productivity, meaning anthropogenic N deposition can stimulate plant growth and subsequently carbon (C) sequestration. Phosphorus (P) and N-P co-limited grasslands are widespread, yet there is limited understanding of their responses to N deposition, which may transition more ecosystems toward P-limited or N-P co-limited states. Here, we investigate the consequences of enhanced N addition on the C-N-P pools of grasslands in different states of nutrient limitation. We explored the response of a long-term nutrient-manipulation experiment on two N-P co-limited grasslands; an acidic grassland of stronger N-limitation and a calcareous grassland of stronger P-limitation, by combining data with an integrated C-N-P cycling model (N14CP). To explore the role of P-access mechanisms in determining ecosystem state, we allowed P-access to vary, and compared the outputs to plant-soil C-N-P data. Combinations of organic P access and inorganic P availability most closely representing data were used to simulate the grasslands and quantify their temporal response to nutrient manipulation. The model suggested N additions have increased C stocks in the acidic grassland, but decreased them in the calcareous, where N provision exacerbated P-limitation and reduced biomass input to the soil. Furthermore, plant acquisition of organic P may play an important role in reducing P-limitation, as both simulated grasslands increased organic P uptake to meet P demand. We conclude that grasslands of differing limiting nutrients may respond to N deposition in contrasting ways, and stress that as N deposition shifts ecosystems toward P-limitation, a globally important carbon sink risks degradation. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index