Autor: |
Lindberg, Simon, Cavallo, Carmen, Calcagno, Giulio, Navarro‐Suárez, Adriana M., Johansson, Patrik, Matic, Aleksandar |
Zdroj: |
Batteries & Supercaps; Nov2020, Vol. 3 Issue 11, p1233-1238, 6p |
Abstrakt: |
TiO2 is a promising material for high‐power battery and supercapacitor applications. However, in general TiO2 suffers from an initial irreversible capacity that limits its use in different applications. A combination of a microbead morphology, Nb‐doping, and the use of an ionic liquid electrolyte is shown to significantly decrease the irreversible capacity loss. A change in the electrochemical response in the first cycles indicates formation of a solid–electrolyte interphase (SEI) or a modification of the structure of the surface layer of the TiO2/Nb microbeads, which apparently stabilises the performance. The change in the response is manifested in an increased charge transfer resistance and the presence of two charge transfer contributions. During prolonged cycling the TiO2/Nb electrode shows an excellent stability over 5000 cycles. Ex situ analysis after cycling shows that the overall microbead morphology is intact and that there are no changes in the crystal structure. However, a decrease in the intensity of the XRD pattern can point to a decrease in size of the nanocrystals building up the microbeads or the formation of amorphous phases. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|