Autor: |
Mohammed, Asmaa N., Radi, Abeer M., Khaled, Rehab, Abo El-Ela, Fatma I., Kotp, Amna A. |
Předmět: |
|
Zdroj: |
Environmental Science & Pollution Research; Dec2020, Vol. 27 Issue 34, p42791-42805, 15p |
Abstrakt: |
New approaches are required for prevention and control of biofilm-producing bacteria and consequently mitigating the health problems of bovine clinical mastitis. This work designed to determine prevalence rates of biofilm-producing bacteria that causing bovine clinical mastitis and evaluate the anti-biofilm effectiveness of novel nanocomposite of zinc–aluminum layered double hydroxide intercalated with gallic acid (GA) as chelating agent (Zn-Al LDH/GA) on the prevention and control of environmental pathogenic bacteria; Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Staphylococcus aureus (S. aureus), and Coagulase-negative staphylococci (CNS), besides Listeria monocytogenes (L. monocytogenes) and assess the ability to use as an antimicrobial agent, and/or sanitizer for milking equipment. All samples (n = 230) involved clinical mastitis cow's milk (n = 50) beside environmental samples (n = 180) were collected then examined for isolation and identification of bacterial pathogens. Zn-Al LDH/GA nanocomposite was synthesized using co-precipitation method, then characterized by Fourier-transform infrared spectroscopy (FT-IR); X-ray diffraction (XRD); field emission scanning electron microscopy (FESEM); high-resolution transmission electron microscopy (HRTEM); thermogravimetric analysis (TGA); differential thermal analysis (DTA); zeta potential; DLS analysis; and Brunauer, Emmett, and Teller (BET) surface area. The anti-biofilm activity of nanocomposite against mastitis-causing bacteria was detected using the broth micro-dilution and disc-diffusion assay. Results, the minimum concentration of Zn-Al LDH/GA that inhibited the growth of gram-positive and negative bacteria, were 312–625 and 5000 μg/mL, respectively. The LD50 of Zn-Al LDH/GA was determined in mice at 1983.3 mg/kg b.wt. As a conclusion, Zn-Al LDH/GA nanocomposite proved its efficiency as an antimicrobial agent and/or sanitizer used for cleaning of milking equipment, due to it could inhibit the growth and multiplication of potentially pathogenic bacteria that causing clinical mastitis and its formation of biofilm on the milking equipment. Zn-Al LDH/GA was found to use under varying pH conditions compared with other commercial sanitizer used besides the formation of nanocomposite increases the material stability. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|