Pyrrolidine dithiocarbamate reduces alloxan-induced kidney damage by decreasing nox4, inducible nitric oxide synthase, and metalloproteinase-2.

Autor: Pereira, Bruna Pinheiro, do Valle, Gabriel Tavares, Salles, Bruno César Côrrea, Costa, Karla Cristinne Mancini, Ângelo, Marilene Lopes, Torres, Larissa Helena Lobo, Novaes, Rômulo Dias, Ruginsk, Sílvia Graciela, Tirapelli, Carlos Renato, de Araújo Paula, Fernanda Borges, Ceron, Carla Speroni
Předmět:
Zdroj: Naunyn-Schmiedeberg's Archives of Pharmacology; Oct2020, Vol. 393 Issue 10, p1899-1910, 12p
Abstrakt: We examined the effect of the NFκB inhibitor pyrrolidine-1-carbodithioic acid (PDTC) on inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2) activity, and oxidative and inflammatory kidney damage in alloxan-induced diabetes. Two weeks after diabetes induction (alloxan-130 mg/kg), control and diabetic rats received PDTC (100 mg/kg) or vehicle for 8 weeks. Body weight, glycemia, urea, and creatinine were measured. Kidney changes were measured in hematoxylin/eosin sections and ED1 by immunohistochemistry. Kidney thiobarbituric acid reactive substances (TBARS), superoxide anion (O2−), and nitrate/nitrite (NOx) levels, and catalase and superoxide dismutase (SOD) activities were analyzed. Also, kidney nox4 and iNOS expression, and NFkB nuclear translocation were measured by western blot, and MMP-2 by zymography. Glycemia and urea increased in alloxan rats, which were not modified by PDTC treatment. However, PDTC attenuated kidney structural alterations and macrophage infiltration in diabetic rats. While diabetes increased both TBARS and O2 levels, PDTC treatment reduced TBARS in diabetic and O2 in control kidneys. A decrease in NOx levels was found in diabetic kidneys, which was prevented by PDTC. Diabetes reduced catalase activity, and PDTC increased catalase and SOD activities in both control and diabetic kidneys. PDTC treatment reduced MMP-2 activity and iNOS and p65 NFκB nuclear expression found increased in diabetic kidneys. Our results show that the NFκB inhibitor PDTC reduces renal damage through reduction of Nox4, iNOS, macrophages, and MMP-2 in the alloxan-induced diabetic model. These findings suggest that PDTC inhibits alloxan kidney damage via antioxidative and anti-inflammatory mechanisms. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index