Autor: |
Zhang, Dongyan, Lin, Liying, Yang, Bingwu, Meng, Zhen, Zhang, Bin |
Předmět: |
|
Zdroj: |
PLoS ONE; 8/13/2020, Vol. 15 Issue 8, p1-11, 11p |
Abstrakt: |
The TCIRG1 gene encodes the a3 isoform of vacuolar H+-ATPase (V-ATPase), which forms a proton transport channel in osteoclasts. Defects in this gene lead to functional impairment of osteoclasts and increased bone mass; however, the molecular mechanisms of TCIRG1 loss have not been fully elucidated. In the current study, we transfected mouse bone marrow-derived monocytes with control or Tcirg1-knockdown lentiviruses to further investigate the mechanisms of TCIRG1. Our results demonstrate that knockdown of Tcirg1 inhibits large-osteoclast (>100 μm) generation by decreasing the expression of nuclear factor of activated T-cells 1 (NFATc1) and inositol-1,4,5-trisphosphate receptor 2 (IP3R2). The decreased IP3R2 reduces intracellular calcium levels, which limits the nuclear translocation of NFATc1 in RANKL-induced mouse bone marrow-derived monocytes. These findings provide a mechanism to explain the effects of TCIRG1 impairment, with potential implications for the development of therapies for osteopetrosis. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|