Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension.

Autor: Akazawa, Yohei, Okumura, Kenichi, Ishii, Ryo, Slorach, Cameron, Wei Hui, Haruki Ide, Osami Honjo, Mei Sun, Kabir, Golam, Connelly, Kim, Friedberg, Mark K.
Předmět:
Zdroj: Journal of Applied Physiology; Aug2020, Vol. 129 Issue 2, p238-246, 9p
Abstrakt: Right ventricular (RV) dysfunction determines mortality in patients with pulmonary arterial hypertension (PAH) and RV pressure loading. Experimental models commonly use Sugen hypoxia (SuHx)-induced PAH, monocrotaline (MCT)-induced PAH, or pulmonary artery banding (PAB). Because PAH models cannot interrogate RV effects or therapies independent of pulmonary vascular effects, we aimed to compare RV function and fibrosis in experimental PAB vs. PAH. Thirty rats were randomized to either sham controls, PAB, SuHx-, or MCT-induced PAH. RV pressures and function were assessed by high-fidelity pressure-tipped catheters and by echocardiography. RV myocyte hypertrophy, fibrosis, and capillary density were quantified from hematoxylin-eosin, picrosirius red-stained, and CD31-immunostained RV sections, respectively. RV pressures and the RV-to-left ventricular pressure ratio were significantly increased in all three groups to a similar degree (PAB 65 ± 17 mmHg, SuHx 72 ± 16 mmHg, and MCT 70 ± 12 mmHg) vs. controls (23 ± 2 mmHg, all P < 0.01). RV dilatation, hypertrophy, and fibrosis were similarly increased, and capillary density decreased, in the three models (RV fibrosis; PAB 13.3 ± 3.6%, SuHx 9.8 ± 3.0% and MCT 10.9 ± 2.4% vs control 5.5 ± 1.1%, all P < 0.05). RV function was similarly decreased in all models vs. controls. We observed comparable RV dilatation, hypertrophy, systolic and diastolic dysfunction, fibrosis, and capillary rarefaction in rat models of PAB, SuHx-, and MCT-induced PAH. These results suggest that PAB, when sufficiently severe, induces features of maladaptive RV remodeling and can be used to investigate RV pathophysiology and therapy effects independent of pulmonary vascular resistance. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index