Acoustic Emission Monitoring of the Turin Cathedral Bell Tower: Foreshock and Aftershock Discrimination.

Autor: Manuello Bertetto, Amedeo, Masera, Davide, Carpinteri, Alberto
Předmět:
Zdroj: Applied Sciences (2076-3417); Jun2020, Vol. 10 Issue 11, p3931, 23p
Abstrakt: Featured Application: The Acoustic Emission (AE) technique can be used to perform structural monitoring of historical buildings including tall masonry towers. In addition, the AE data detected on the structure, during the earthquake activity, can be used to discriminate foreshock and aftershock intervals. Historical churches, tall ancient masonry buildings, and bell towers are structures subjected to high risks due to their age, elevation, and small base-area-to-height ratio. In this paper, the results of an innovative monitoring technique for structural integrity assessment applied to a historical bell tower are reported. The emblematic case study of the monitoring of the Turin Cathedral bell tower (northwest Italy) is herein presented. First of all, the damage evolution in a portion of the structure localized in the lower levels of the tall masonry building is described by the evaluation of the cumulative number of acoustic emissions (AEs) and by different parameters able to predict the time dependence of the damage development, in addition to the 3D localization of the AE sources. The b-value analysis shows a decreasing trend down to values compatible with the growth of localized micro and macro-cracks in the portion of the structure close to the base of the tower. These results seem to be in good agreement with the static and dynamic analysis performed numerically by an accurate FEM (finite element model). Similar results were also obtained during the application of the AE monitoring to the wooden frame sustaining the bells in the tower cell. Finally, a statistical analysis based on the average values of the b-value are carried out at the scale of the monument and at the seismic regional scale. In particular, according to recent studies, a comparison between the b-value obtained by AE signal analysis and the regional activity is proposed in order to correlate the AE detected on the structure to the seismic activity, discriminating foreshock, and aftershock intervals in the analyzed time series. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index