Asymmetric one-pot transformation of isoflavones to pterocarpans and its application in phytoalexin synthesis.

Autor: Ciesielski, Philipp, Metz, Peter
Předmět:
Zdroj: Nature Communications; 6/18/2020, Vol. 11 Issue 1, p1-8, 8p
Abstrakt: Phytoalexins have attracted much attention due to their health-promoting effects and their vital role in plant health during the last years. Especially the 6a-hydroxypterocarpans glyceollin I and glyceollin II, which may be isolated from stressed soy plants, possess a broad spectrum of bioactivities such as anticancer activity and beneficial contributions against western diseases by anti-oxidative and anti-cholesterolemic effects. Aiming for a catalytic asymmetric access to these natural products, we establish the asymmetric syntheses of the natural isoflavonoids (−)-variabilin, (−)-homopterocarpin, (−)-medicarpin, (−)-3,9-dihydroxypterocarpan, and (−)-vestitol by means of an asymmetric transfer hydrogenation (ATH) reaction. We successfully adapt this pathway to the first catalytic asymmetric total synthesis of (−)-glyceollin I and (−)-glyceollin II. This eight-step synthesis features an efficient one-pot transformation of a 2′-hydroxyl-substituted isoflavone to a virtually enantiopure pterocarpan by means of an ATH and a regioselective benzylic oxidation under aerobic conditions to afford the susceptible 6a-hydroxypterocarpan skeleton. Concise total syntheses of 6a-hydroxypterocarpans are sought after due to their broad spectrum of bioactivities. Here, the authors report the asymmetric syntheses of several natural isoflavonoids, including (−)-glyceollin I and (−)-glyceollin II, by means of an asymmetric transfer hydrogenation (ATH) reaction. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index