Abstrakt: |
Nowadays, many hydrological rainfall-runoff (R-R) models, both distributed and lumped, have been developed to simulate the catchment. However, selecting the right model to simulate a specific catchment has always been a challenge. A proper understanding of the model and its advantages and limitations is essential for selecting the appropriate model for the purpose of the study. To this end, several studies have been carried out to evaluate the performance of hydrological models for specific areas (mountainous, marshy and so on). This study was conducted aimed at evaluating the performance of MIKE11 NAM lumped conceptual hydrological rainfall-runoff model in simulation of daily flow rate in Gonbad catchment. The NAM model was calibrated and validated using flow rate data of three hydrometric stations of the Gonbad catchment. The model performance was evaluated using Percent bias (PBIAS) and the coefficient of determination or Nash-Sutcliffe coefficient. A Nash Sutcliffe efficiency (NSE) of 0.80, 0.89 and 080 were obtained during calibration, whereas, for the validation period, NSE of 0.81, 0.87 and 0.71 were obtained for Nemooneh sub catchment, Shahed sub catchment and Gonbad catchment respectively. Percent bias of -0.6, 1.5 and 6.3 were achieved for calibration, while -2.7, 7.6 and -4.2 were acquired during validation for Nemooneh sub catchment, Shahed sub catchment and Gonbad catchment respectively. Based on the results, the MIKE 11 NAM lumped conceptual model was capable of simulating daily mean flow rate and mean flow volume. [ABSTRACT FROM AUTHOR] |