Abstrakt: |
Performance of series connected batteries is limited by the “weakest link” effect, i.e., the cell or group of cells with the poorest performance in terms of temperature, power, or energy characteristics. To mitigate the “weakest link” effect, this study deals with the design, modeling, and experimental demonstration of a smart and hybrid balancing system (SHBS). A cell-to-cell shared energy transfer configuration is proposed, including a supercapacitor bank in the balancing bus, thus enabling hybridization. Energy is transferred from each battery module connected in series to the balancing bus, and vice-versa, by means of low-cost bi-directional dc–dc converters. The current setpoints of the converters are obtained by means of a smart balancing control strategy, implemented using convex optimization. The strategy is called “smart” because it pursues goals beyond the conventional state-of-charge equalization, including temperature and power capability equalization, and minimization of energy losses. Simulations show that the proposed SHBS is able to achieve all these goals effectively in an e-mobility application and are also used to assess the impact of different hybridization ratios and cooling conditions. Finally, an experimental setup is developed to demonstrate the feasibility of the SHBS. [ABSTRACT FROM AUTHOR] |