Krasnoshteinite, Al8[B2O4(OH)2](OH)16Cl4⋅7H2O, a New Microporous Mineral with a Novel Type of Borate Polyanion.

Autor: Pekov, Igor V., Zubkova, Natalia V., Chaikovskiy, Ilya I., Chirkova, Elena P., Belakovskiy, Dmitry I., Yapaskurt, Vasiliy O., Bychkova, Yana V., Lykova, Inna, Britvin, Sergey N., Pushcharovsky, Dmitry Yu.
Předmět:
Zdroj: Crystals (2073-4352); Apr2020, Vol. 10 Issue 4, p301, 1p
Abstrakt: A new mineral, krasnoshteinite (Al8[B2O4(OH)2](OH)16Cl4⋅7H2O), was found in the Verkhnekamskoe potassium salt deposit, Perm Krai, Western Urals, Russia. It occurs as transparent colourless tabular to lamellar crystals embedded up to 0.06 × 0.25 × 0.3 mm in halite-carnallite rock and is associated with dritsite, dolomite, magnesite, quartz, baryte, kaolinite, potassic feldspar, congolite, members of the goyazite–woodhouseite series, fluorite, hematite, and anatase. Dmeas = 2.11 (1) and Dcalc = 2.115 g/cm3. Krasnoshteinite is optically biaxial (+), α = 1.563 (2), β = 1.565 (2), γ = 1.574 (2), and 2Vmeas = 50 (10)°. The chemical composition (wt.%; by combination of electron microprobe and ICP-MS; H2O calculated from structure data) is: B2O3 8.15, Al2O3 46.27, SiO2 0.06, Cl 15.48, H2Ocalc. 33.74, –O=Cl –3.50, totalling 100.20. The empirical formula calculated based on O + Cl = 33 apfu is (Al7.87Si0.01)Σ7.88[B2.03O4(OH)2][(OH)15.74(H2O)0.26]Σ16[(Cl3.79(OH)0.21]Σ4⋅7H2O. The mineral is monoclinic, P21, a = 8.73980 (19), b = 14.4129 (3), c = 11.3060 (3) Å, β = 106.665 (2)°, V = 1364.35 (5) Å3, and Z = 2. The crystal structure of krasnoshteinite (solved using single-crystal data, R1 = 0.0557) is unique. It is based upon corrugated layers of Al-centered octahedra connected via common vertices. BO3 triangles and BO2(OH)2 tetrahedra share a common vertex, forming insular [B2O4(OH)2]4− groups (this is a novel borate polyanion) which are connected with Al-centered octahedra via common vertices to form the aluminoborate pseudo-framework. The structure is microporous, zeolite-like, with a three-dimensional system of wide channels containing Cl- anions and weakly bonded H2O molecules. The mineral is named in honour of the Russian mining engineer and scientist Arkadiy Evgenievich Krasnoshtein (1937–2009). The differences in crystal chemistry and properties between high-temperature and low-temperature natural Al borates are discussed. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index