Abstrakt: |
In this paper, a new active vibration control system has been proposed for the elimination of boring bar chatter in the internal turning process. The system is composed of a boring bar equipped with electromagnetic actuator and accelerometer, as well as a novel adaptive control algorithm that is widely used in the field of active noise control. The controller is known as feedback FxNLMS and is composed of two finite impulse response adaptive filters. One of the filters is known as a model filter, which predicts the dynamic model of actuator-boring bar assembly. The other is known as the control filter and anticipates the inverse model of forwarding path dynamics. The weight vector of the adaptive filter is adjusted by using the normalized least mean square algorithm. Firstly, the impact test is conducted in the presence of an adaptive controller. It is observed that the magnitude of the dominant mode on the forward path’s frequency response function is drastically suppressed by 36 dBs. Secondly, the internal turning tests are conducted on Aluminum alloy 6063-T6, to investigate the performance of the adaptive controller for the purpose of chatter mitigation. Due to the optimal performance of the adaptive controller, the dominant magnitude of the boring bar’s power spectral density is successfully attenuated up to 68 dBs, and the critical limiting depth of cut is increased by 10 folds. Also, the roughness of the machined surface is remarkably improved by 8 folds compared to the control-off cutting test. Moreover, the actuator cost is considerably reduced by 3 folds in comparison to the optimal constant-gain integral controller. [ABSTRACT FROM AUTHOR] |