A 3-Dimensional Bioprinted Scaffold With Human Umbilical Cord Blood–Mesenchymal Stem Cells Improves Regeneration of Chronic Full-Thickness Rotator Cuff Tear in a Rabbit Model.
Autor: | Rak Kwon, Dong, Jung, Seungman, Jang, Jinah, Park, Gi-Young, Suk Moon, Yong, Lee, Sang Chul |
---|---|
Předmět: |
ANIMAL experimentation
CELL culture CHRONIC diseases COLLAGEN COMPARATIVE studies CONFIDENCE intervals CORD blood HEMATOPOIETIC stem cell transplantation IMMUNOHISTOCHEMISTRY RABBITS REGENERATION (Biology) RESEARCH funding STATISTICAL sampling ROTATOR cuff ROTATOR cuff injuries STAINS & staining (Microscopy) STATISTICS DATA analysis EMBRYOS TREATMENT effectiveness MOTION capture (Human mechanics) THREE-dimensional printing TISSUE scaffolds DATA analysis software DESCRIPTIVE statistics WALKING speed MANN Whitney U Test KRUSKAL-Wallis Test EVALUATION |
Zdroj: | American Journal of Sports Medicine; Mar2020, Vol. 48 Issue 4, p947-958, 12p |
Abstrakt: | Background: Chronic full-thickness rotator cuff tears (FTRCTs) represent a major clinical concern because they show highly compromised healing capacity. Purpose: To evaluate the efficacy of using a 3-dimensional (3D) bioprinted scaffold with human umbilical cord blood (hUCB)–mesenchymal stem cells (MSCs) for regeneration of chronic FTRCTs in a rabbit model. Study Design: Controlled laboratory study. Methods: A total of 32 rabbits were randomly assigned to 4 treatment groups (n = 8 per group) at 6 weeks after a 5-mm FTRCT was created on the supraspinatus tendon. Group 1 (G1-SAL) was transplanted with normal saline. Group 2 (G2-MSC) was transplanted with hUCB-MSCs (0.2 mL, 1 × 106) into FTRCTs. Group 3 (G3-3D) was transplanted with a 3D bioprinted construct without MSCs, and group 4 (G4-3D+MSC) was transplanted with a 3D bioprinted construct containing hUCB-MSCs (0.2 mL, 1 × 106 cells) into FTRCTs. All 32 rabbits were euthanized at 4 weeks after treatment. Examination of gross morphologic changes and histologic results was performed on all rabbits after sacrifice. Motion analysis was also performed before and after treatment. Results: In G4-3D+MSC, newly regenerated collagen type 1 fibers, walking distance, fast walking time, and mean walking speed were greater than those in G2-MSC based on histochemical and motion analyses. In addition, when compared with G3-3D, G4-3D+MSC showed more prominent regenerated tendon fibers and better parameters of motion analysis. However, there was no significant difference in gross tear size among G2-MSC, G3-3D, and G4-3D+MSC, although these groups showed significant decreases in tear size as compared with the control group (G1-SAL). Conclusion: Findings of this study show that a tissue engineering strategy based on a 3D bioprinted scaffold filled with hUCB-MSCs can improve the microenvironment for regenerative processes of FTRCT without any surgical repair. Clinical Relevance: In the case of rotator cuff tear, the cell loss of the external MSCs can be increased by exposure to synovial fluid. Therefore, a 3D bioprinted scaffold in combination with MSCs without surgical repair may be effective in increasing cell retention in FTRCT. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: |