Autor: |
Meier, C., Beswick, J. A. |
Předmět: |
|
Zdroj: |
Journal of Chemical Physics; 9/8/2004, Vol. 121 Issue 10, p4550-4558, 9p, 5 Graphs |
Abstrakt: |
The process of decoherence of vibrational states of I2 in a dense helium environment is studied theoretically using the mixed quantum/classical method based on the Bohmian formulation of quantum mechanics [E. Gindensperger, C. Meier, and J. A. Beswick, J. Chem. Phys. 113, 9369 (2000)]. Specifically, the revival of vibrational wave packets is a quantum phenomena which depends sensitively on the coherence between the vibrational states excited by an ultrafast laser pulse. Its detection by a pump-probe setup as a function of rare gas pressure forms a very accurate way of detecting vibrational dephasing. Vibrational revivals of I2 in high pressure rare gas environments have been observed experimentally, and the very good agreement with the simulated spectra confirms that the method can accurately describe decoherence processes of quantum systems in interaction with an environment. © 2004 American Institute of Physics. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|