Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2.

Autor: Stahl, Quirin, Kusch, Maximilian, Heinsch, Florian, Garbarino, Gaston, Kretzschmar, Norman, Hanff, Kerstin, Rossnagel, Kai, Geck, Jochen, Ritschel, Tobias
Předmět:
Zdroj: Nature Communications; 3/6/2020, Vol. 11 Issue 1, p1-7, 7p
Abstrakt: Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals. The microscopic understanding of photo-induced insulator-to-metal transition (IMT) in 1T-TaS2 remains elusive. Here, Stahl et al. identify the collapse of interlayer molecular orbital dimers during a collective electronic phase transition as a key mechanism for the IMT in 1T-TaS2. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index