Short-term impact of spent coffee grounds over soil organic matter composition and stability in two contrasted Mediterranean agricultural soils.

Autor: Comino, Francisco, Cervera-Mata, Ana, Aranda, Victor, Martín-García, Juan Manuel, Delgado, Gabriel
Předmět:
Zdroj: Journal of Soils & Sediments: Protection, Risk Assessment, & Remediation; Mar2020, Vol. 20 Issue 3, p1182-1198, 17p
Abstrakt: Purpose: Spent coffee grounds (SCG) is a biowaste which arouse great interest as soil organic amendment due to the huge amount produced around the world. However, the impact of this residue on soil organic matter (SOM) functionality and stability has been barely studied. Thus, the aim of this work is to study the short-term effects of SCG on the quantity and quality of SOM in two Mediterranean agricultural soils (Vega soil, SV and Red soil, SR) in microcosm conditions. Materials and methods: The in vitro assay was performed with two fresh SCG doses (2.5 and 10% w/w), two incubation times (30 and 60 days) and two agricultural soils (SV and SR). SOM fractionation to obtain total extractable carbon, humic acids, fulvic acids, humins and hot water soluble carbon (HWSC) was determined. Spectroscopic UV-Vis and Mid-IR, thermogravimetric and simultaneous differential thermal analysis, as well as scanning electron microscopy (SEM), were also applied in this study. Results and discussion: SCG increased all SOM fractions, especially the levels of more labile SOM (HWSC, increased 600–700%) and total extractable carbon (increased to around 200%). SCG also increased humic acids and fulvic acids around 200%, but the functionality of humic acids was affected by a reduction of the functional groups with more recalcitrant and stable character. The tested soils are different from each other (the SV has a more clayish texture and a higher smectite clay content than the SR) which made the behaviour of these soils different. The degree of incorporation of SCG into the soils structure and the interaction between soil and SCG particles (observed by SEM) affected carbon retention under stable forms, increasing carbon stabilization in SV with respect to SR. Conclusions: The short-term effect of SCG on SOM composition and functionality demonstrate that this bioresidue could be used as soil organic amendment, being a valuable alternative use of a polluting waste. Soil type is a key factor since it influences the soil-SCG interaction and consequently SOM stability. To deepen the study of those effects, it would be necessary to analyze the long-term effects, field studies and to test in a greater number of soil types. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index