Human basophil histamine release is differently affected by inhibitors of calmodulin, diacylglycerol kinase and peptidyl prolyl cis-trans isomerase in a secretagogue specific manner.

Autor: Bergstrand, H., Lundquist, B.
Předmět:
Zdroj: Allergy; Aug92 Part 2, Vol. 47, p353-361, 9p
Abstrakt: To assess the role of calmodulin in human basophil histamine release, we triggered leukocytes with different secretagogues in the presence of putative inhibitors of calmodulin. Calcium ionophore-induced histamine release was reduced or blocked by calmidazolium, CGS 9343B, felodipine, metofenazate, and Ro 22-4839. H 186/86, a felodipine-related dihydropyridine derivative, blocked A23187-but not ionomycin-triggered histamine release, suggesting a difference in the mode of action of these ionophores. In contrast, leukocyte histamine release triggered by the purported protein kinase C (PKC) activator, 12-isopropylidene-3-decanoylsn-glycerol (IpOCOC9), was enhanced by calmidazolium, CGS 9349B and metofenazate but not affected by felodipine or Ro 22-4839, whereas the response triggered by 4β-phorbol 12-myristate 13-acetate (PMA) was reduced by metofenazate and Ro 22-4839 but not consistently affected by calmidazolium, CGS 9343B or felodipine. The PMA-induced histamine release was enhanced by H 186/86. Anti-IgE- and FMLP-induced responses were either unaffected or slightly enhanced by the examined calmodulin antagonists. In comparison with the calmodulin antagonists, R 59022, an inhibitor of diacylglycerol kinase, failed to reduce calcium ionophore-triggered histamine release, whereas FK506, an inhibitor of peptidyl prolyl cis-trans isomerase (PPI), reduced both anti-IgE- and ionophore-triggered responses. These results indicate that calmodulin constitutes an obligate link in signal transduction pathways leading to human leukocyte histamine release if the trigger is a calcium ionophore but not when responses are induced by anti-IgE, FMLP or PMA; a calmodulin-dependent component may rather balance responses induced by IpOCOC9. We also conclude that most employed stimuli, including IpOCOC9, trigger human basophil histamine release through partly distinct pathways. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index