The Effect of Protein-Rich Extract from Bombyx Batryticatus against Glutamate-Damaged PC12 Cells Via Regulating γ-Aminobutyric Acid Signaling Pathway.

Autor: He, Li-Ying, Hu, Mei-Bian, Li, Ruo-Lan, Zhao, Rong, Fan, Lin-Hong, Wang, Li, Peng, Wei, Liu, Yu-Jie, Wu, Chun-Jie
Předmět:
Zdroj: Molecules; Feb2020, Vol. 25 Issue 3, p553, 1p
Abstrakt: Bombyx Batryticatus (BB) is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, etc. in China for thousands of years. This study is aimed at investigating optimum extraction of protein-rich extracts from BB (BBPs) using response surface methodology (RSM) and exploring the protective effects of BBPs against nerve growth factor (NGF)-induced PC12 cells injured by glutamate (Glu) and their underlying mechanisms. The results indicated optimum process of extraction was as follows: extraction time 1.00 h, ratio of liquid to the raw material 3.80 mL/g and ultrasonic power 230.0 W. The cell viability of PC12 cells stimulated by Glu was determined by CCK-8 assay. The levels of γ-aminobutyric (GABA), interleukin-1β (IL-1β), interleukin-4 (IL-4), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT) and glucocorticoid receptor alpha (GR) in PC12 cells were assayed by ELISA. Furthermore, the Ca2+ levels in PC12 cells were determined by flow cytometry analysis. Protein and mRNA expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 in PC12 cells were evaluated by real-time polymerase chain reaction (RT-PCR) and Western blotting assays. Results revealed that BBPs decreased toxic effects due to Glu treatment and decreased Ca2+ levels in PC12 cells. After BBPs treatments, levels of GABA and 5-HT were increased and contents of TNF-α, IL-4 and IL-1β were decreased in NGF-induced PC12 cells injured by Glu. Moreover, BBPs up-regulated the expressions of GABAA-Rα1, GAD 65 and GAD 67, whereas down-regulated that of NMDAR1 GAT 1 and GAT 3. These findings suggested that BBPs possessed protective effects on NGF-induced PC12 cells injured by Glu via γ-Aminobutyric Acid (GABA) signaling pathways, which demonstrated that BBPs has potential anti-epileptic effect in vitro. These findings may be useful in the development of novel medicine for the treatment of epilepsy. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index