The MRCC program system: Accurate quantum chemistry from water to proteins.

Autor: Kállay, Mihály, Nagy, Péter R., Mester, Dávid, Rolik, Zoltán, Samu, Gyula, Csontos, József, Csóka, József, Szabó, P. Bernát, Gyevi-Nagy, László, Hégely, Bence, Ladjánszki, István, Szegedy, Lóránt, Ladóczki, Bence, Petrov, Klára, Farkas, Máté, Mezei, Pál D., Ganyecz, Ádám
Předmět:
Zdroj: Journal of Chemical Physics; 2/21/2020, Vol. 152 Issue 7, p1-18, 18p, 1 Color Photograph, 5 Charts, 3 Graphs
Abstrakt: MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller–Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index