Autor: |
Guerrero, M. K. M. R., Vivar, J. A. M., Ramos, R. V., Tamondong, A. M. |
Předmět: |
|
Zdroj: |
International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences; 11/14/2019, Vol. XLII-4/W19, p233-240, 8p |
Abstrakt: |
The sensitivity to changes in water quality inherent to seagrass communities makes them vital for determining the overall health of the coastal ecosystem. Numerous efforts including community-based coastal resource management, conservation and rehabilitation plans are currently undertaken to protect these marine species. In this study, the relationship of water quality parameters, specifically chlorophyll-a (chl-a) and turbidity, with seagrass percent cover is assessed quantitatively. Support Vector Machine, a pixel-based image classification method, is applied to determine seagrass and non-seagrass areas from the orthomosaic which yielded a 91.0369% accuracy. In-situ measurements of chl-a and turbidity are acquired using an infinity-CLW water quality sensor. Geostatistical techniques are utilized in this study to determine accurate surfaces for chl-a and turbidity. In two hundred interpolation tests for both chl-a and turbidity, Simple Kriging (Gaussian-model type and Smooth- neighborhood type) performs best with Mean Prediction equal to −0.1371 FTU and 0.0061 μg/L, Root Mean Square Standardized error equal to −0.0688 FTU and −0.0048 μg/L, RMS error of 8.7699 FTU and 1.8006 μg/L and Average Standard Error equal to 10.8360 FTU and 1.6726 μg/L. Zones are determined using fishnet tool and Moran's I to calculate for the seagrass percent cover. Ordinary Least Squares (OLS) is used as a regression analysis to quantify the relationship of seagrass percent cover and water quality parameters. The regression analysis result indicates that turbidity has an inverse relationship while chlorophyll-a has a direct relationship with seagrass percent cover. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|