The use and effectiveness of colorful, contextualized, student-made material for elementary mathematics instruction.

Autor: Kaminski, Jennifer A., Sloutsky, Vladimir M.
Předmět:
Zdroj: International Journal of STEM Education; 2/10/2020, Vol. 7 Issue 1, p1-23, 23p
Abstrakt: Background: There is anecdotal evidence that many elementary teachers integrate mathematics lessons and art activities by having students first make colorful, rich material that is subsequently used in an instructional activity. However, it is unclear whether such activities effectively promote learning and transfer of mathematical concepts. The goal of the present research was to examine the use and effectiveness of such "math-and-art" activities on children's ability to acquire basic fraction knowledge. We report the results of a survey of practicing elementary school teachers in the United States, their use of activities involving physical material, and the resources they use for ideas to supplement the standard curriculum. Two experiments examined first-grade students' learning, transfer, and recognition of fraction knowledge from rich, contextualized material versus simple, generic material. Results: The survey results confirm that many U.S. teachers use math-and-art activities and are often inspired by informal sources, such as Pinterest and YouTube. Experiment 1 examined the effectiveness of colorful, contextualized student-constructed material (paper pizzas) versus simple, pre-made material (monochromatic paper circles) in an instructional activity on fractions. Students who used the pre-made circles scored higher than those who used the student-made pizzas on pre-instruction tests of basic fraction knowledge, immediate tests of learning, and delayed tests of transfer. Experiment 2 tested students' ability to spontaneously write fractions to describe proportions of pizzas and circles. Students who answered generic circle questions first were markedly more accurate than those who answered pizza questions first. Conclusions: These findings suggest that rich, contextualized representations, including those made by the student, can hinder students' learning and transfer of mathematical concepts. We are not suggesting that teachers never integrate mathematics and colorful, contextualized material, and activities. We do suggest that elementary students' mathematics learning can benefit when initial instruction involves simple, generic, pre-made material and opportunities for students to make and use colorful, contextualized representations come later. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index