Autor: |
Schreiner, Courtney L., Nuismer, Scott L., Basinski, Andrew J., Bauer, Silke |
Předmět: |
|
Zdroj: |
Journal of Applied Ecology; Feb2020, Vol. 57 Issue 2, p307-319, 13p, 3 Charts, 8 Graphs |
Abstrakt: |
Wildlife vaccination is an important tool for managing the burden of infectious disease in human populations, domesticated livestock and various iconic wildlife. Although substantial progress has been made in the field of vaccine designs for wildlife, there is a gap in our understanding of how to time wildlife vaccination, relative to host demography, to best protect a population.We use a mathematical model and computer simulations to assess the outcomes of vaccination campaigns that deploy vaccines once per annual population cycle.Optimal timing of vaccination is an important consideration in animals with short to intermediate life spans and a short birthing season. Vaccines that are deployed shortly after the birthing season best protect the host population.The importance of timing is greater in wildlife pathogens that have a high rate of transmission and a short recovery period. Vaccinating at the end of the birthing season best reduces the mean abundance of pathogen‐infected hosts. Delaying vaccination until later in the year can facilitate pathogen elimination.Policy Implications. Tuning wildlife vaccination campaigns to host demography and pathogen traits can substantially increase the effectiveness of a campaign. Our results suggest that, for a fluctuating population, vaccinating at, or shortly after, the end of the birthing season, best protects the population against an invading pathogen. If the pathogen is already endemic, delaying vaccination until after the birthing season is over can help facilitate pathogen elimination. Our results highlight the need to better understand and predict host demography in wildlife populations that are targeted for vaccination. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|