Design by numerical simulation of an in situ alpha spectrometer operating at ambient air pressure.

Autor: Lyoussi, A., Giot, M., Carette, M., Jenčič, I., Reynard-Carette, C., Vermeeren, L., Snoj, L., Le Dû, P., Degrelle, D., Venara, J., Ben Mosbah, M., Cuozzo, M., Mahé, C., Serrano, R.
Předmět:
Zdroj: EPJ Web of Conferences; 1/1/2020, Vol. 225, p1-8, 8p
Abstrakt: Alpha emitters are usually identified and quantified by alpha spectrometry measurements in a vacuum chamber performed in laboratory environments. This study shows that transuranic elements can be distinguished under ambient conditions using a grid collimator. The aim of this work was to use numerical simulations with the MCNP6 code to design a grid with a resolution high enough to differentiate the same radionuclide combinations as alpha spectrometry in a vacuum chamber, namely 239Pu + 240Pu, 241Am + 238Pu and 244Cm. Results show that a compromise is required to obtain the best performances in terms of energy resolution and detection efficiency, leading to the choice of two hexagonal grid collimators. The first has a collimation height of 0.5 cm and an apothem of 1 mm. Laboratory tests on electrodeposited sources show that the target radionuclides can be identified without prior deconvolution, with an energy resolution of about 70 keV and a detection efficiency of 0.74% at incident energies of 5–6 MeV. The second grid has the same collimation height but a coarser mesh with an apothem of 2 mm. In this case, the alpha peaks are still distinguishable, but with a lower resolution of 125 keV. The detection efficiency is three times higher however. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index