Autor: |
Quadeer, Ahmed A., Barton, John P., Chakraborty, Arup K., McKay, Matthew R. |
Předmět: |
|
Zdroj: |
Nature Communications; 1/17/2020, Vol. 11 Issue 1, p1-13, 13p |
Abstrakt: |
Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements. This is achieved by first developing a probabilistic model for the prevalence of vp1 sequences that enables us to isolate and remove data that are subject to strong vaccine-derived biases. The intrinsic fitness constraints derived for vp1, a capsid protein subject to antibody responses, are compared with those of analogous HIV proteins. We find that vp1 evolution is subject to tighter constraints, limiting its ability to evade vaccine-induced immune responses. Our analysis also indicates that circulating poliovirus strains in unimmunized populations serve as a reservoir that can seed outbreaks in spatio-temporally localized sub-optimally immunized populations. Poliovirus has a higher mutation rate than HIV, yet has been almost eradicated by vaccination while an effective vaccine against HIV does not exist. Here, the authors develop a fitness model for poliovirus viral protein 1 to show that it is subject to stringent evolutionary constraints that limit its ability to avoid vaccine-induced immune responses. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|