Autor: |
Subhash, D., Gupta, S. M., Setia, S., Pavlykivskyi, V. |
Předmět: |
|
Zdroj: |
Archives of Materials Science & Engineering; 2019, Vol. 99 Issue 1/2, p30-41, 12p |
Abstrakt: |
Purpose: Investigate the potential of vacuum dewatering process of on three different grades of concrete namely M20, M30 and M40 to evaluate its compressive strength. Design/methodology/approach: For this study a data set of 90 experimental observations obtained from laboratory testing with and without application of vacuum dewatering after designing and casting the concrete of said three grades. The standard cubes of size 150 mm × 150 mm × 150 mm were obtained by core cutting and tested for compression after 3, 7, 14, 21 and 28 days of proper curing. Accuracy of prediction of compressive strength of concrete by application of M5P, ANN and SVM as artificial intelligence techniques and their feasibility are assessed to estimate the compressive strength of the concrete enacted with vacuum dewatering technique. A total data set was segregated in two groups. A group of 63 observations was used for model development and smaller group of 27 observations was used for testing the models. Findings: Overall performance of ANN based developed model is better than M5P and SVM based models for predicting the compressive strength of concrete for this data set. Research limitations/implications: Investigated three different grades of concrete namely M20, M30 and M40 to evaluate its compressive strength. The experimental research involved only testing of cubes only. Practical implications: Using ANN based developed model makes it possible to quickly and accurately predict the compressive strength of concrete. Originality/value: The results of comparing three models for predicting the compressive strength of concrete and the optimal values of ANN based developed models are presented. Earlier no one has applied M5P, ANN and SVM modelling to predict the compressive strength of vacuum dewatered concrete. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|