Autor: |
Rendon, Dalila, Hamby, Kelly A, Arsenault‐Benoit, Arielle L, Taylor, Christopher M, Evans, Richard K, Roubos, Craig R, Sial, Ashfaq A, Rogers, Mary, Petran, Andrew, Van Timmeren, Steven, Fanning, Philip, Isaacs, Rufus, Walton, Vaughn |
Předmět: |
|
Zdroj: |
Pest Management Science; Jan2020, Vol. 76 Issue 1, p55-66, 12p |
Abstrakt: |
BACKGROUND: Fruit growers largely depend on chemical control to reduce populations of the economically damaging invasive fly, Drosophila suzukii (Matsumura). Drosophila suzukii is susceptible to high temperatures and low humidity; therefore, it may be possible to implement cultural control practices that create microclimates unfavorable for its development and survival. In addition to other fruit production benefits, in‐row mulches may impede the development of D. suzukii immatures when larvae leave the fruit to pupate in the soil. This study compared the effects of different mulches (black polypropylene fabric weedmats, sawdust, and wood chips) on temperature and relative humidity (RH), and on adult emergence of D. suzukii from larvae in blueberries and pupae, both above and below the ground surface in blueberry plantings (Vaccinium corymbosum L.). RESULTS: Across regions, both lower larval survival and longer periods with high suboptimal temperatures occurred above the ground in comparison to buried below the ground, regardless of mulch type. Fewer D. suzukii adults emerged from larvae on weedmat mulch at one site, but there was no effect of mulch type on temperature, RH, or D. suzukii emergence at most sites. The relationships between temperature, RH, and the emergence of adults from larvae and pupae varied by region. Natural infestation by D. suzukii in blueberries was lower over weedmat compared to wood‐based mulches at one site. Greenhouse experiments showed that larvae burrowed to pupate underneath sawdust mulch, but were unable to pupate underneath a weedmat mulch. CONCLUSIONS: Although weedmats may not modify temperatures or RH enough to consistently affect D. suzukii emergence, they can reduce field suitability for D. suzukii by providing a barrier that prevents larvae from reaching favorable pupation microhabitats underground. © 2019 Society of Chemical Industry [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|