Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance.

Autor: Sun, Fan, Li, Liwen, Yan, Pengrong, Zhou, Jingjiao, Shapiro, Steven D., Xiao, Gutian, Qu, Zhaoxia
Předmět:
Zdroj: Nature Communications; 11/22/2019, Vol. 10 Issue 1, pN.PAG-N.PAG, 1p
Abstrakt: Most cancers are resistant to anti-PD-1/PD-L1 and chemotherapy. Herein we identify PDLIM2 as a tumor suppressor particularly important for lung cancer therapeutic responses. While PDLIM2 is epigenetically repressed in human lung cancer, associating with therapeutic resistance and poor prognosis, its global or lung epithelial-specific deletion in mice causes increased lung cancer development, chemoresistance, and complete resistance to anti-PD-1 and epigenetic drugs. PDLIM2 epigenetic restoration or ectopic expression shows antitumor activity, and synergizes with anti-PD-1, notably, with chemotherapy for complete remission of most lung cancers. Mechanistically, through repressing NF-κB/RelA and STAT3, PDLIM2 increases expression of genes involved in antigen presentation and T-cell activation while repressing multidrug resistance genes and cancer-related genes, thereby rendering cancer cells vulnerable to immune attacks and therapies. We identify PDLIM2-independent PD-L1 induction by chemotherapeutic and epigenetic drugs as another mechanism for their synergy with anti-PD-1. These findings establish a rationale to use combination therapies for cancer treatment. PDLIM2 is repressed epigenetically in lung cancers, which are frequently resistant to anti-PD-1/PD-L1 and chemotherapy. Here, the authors describe the mechanism through which epigenetic restoration of PDLIM2 synergises with anti-PD-1 and chemotherapy in lung cancers. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index