Autor: |
Dresler, Sławomir, Hawrylak-Nowak, Barbara, Strzemski, Maciej, Wójciak-Kosior, Magdalena, Sowa, Ireneusz, Hanaka, Agnieszka, Gołoś, Iwona, Skalska-Kamińska, Agnieszka, Cieślak, Małgorzata, Kováčik, Jozef |
Předmět: |
|
Zdroj: |
Plants (2223-7747); Nov2019, Vol. 8 Issue 11, p517, 1p |
Abstrakt: |
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days of exposure. The higher concentration of Ag(I) evoked reduction of growth, while 1 µM Ag had a growth-promoting effect on root biomass. The translocation factor (<0.04) showed that Ag was mainly retained in the roots. The 1 µM Ag concentration increased the level of low-molecular-weight organic acids (LMWOAs), while 10 µM Ag depleted these compounds in the roots. The increased concentration of Ag(I) elevated the accumulation of phytochelatins (PCs) in the roots and reduced glutathione (GSH) in the shoots (but not in the roots). At 1 µM, Ag(I) elevated the level of phenolic and triterpene acids, while the 10 µM Ag treatment increased the carlina oxide content in the roots. The obtained results indicate an alteration of metabolic pathways of C. acaulis to cope with different levels of Ag(I) stress. Our data imply that the intracellular binding of Ag(I) and nonenzymatic antioxidants contribute to the protection against low concentrations of Ag ions. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|