Autor: |
Kholod, Ivan, Shorov, Andrey, Titkov, Evgenii, Gorlatch, Sergei |
Předmět: |
|
Zdroj: |
Journal of Supercomputing; Dec2019, Vol. 75 Issue 12, p7909-7920, 12p |
Abstrakt: |
We describe a novel, systematic approach to efficiently parallelizing data mining algorithms: starting with the representation of an algorithm as a sequential composition of functions, we formally transform it into a parallel form using higher-order functions for specifying parallelism. We implement the approach as an extension of the industrial-strength Java-based library Xelopes, and we illustrate its use by developing a multi-threaded Java program for the popular naive Bayes classification algorithm. In comparison with the popular MapReduce programming model, our resulting programs enable not only data-parallel, but also task-parallel implementation and a combination of both. Our experiments demonstrate an efficient parallelization and good scalability on multi-core processors. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|