Effect of low-frequency alternating current poling on 5-mm-thick 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals.

Autor: Luo, Chengtao, Wan, Haotian, Chang, Wei-Yi, Yamashita, Yohachi, Paterson, Alisa R., Jones, Jacob, Jiang, Xiaoning
Předmět:
Zdroj: Applied Physics Letters; 11/4/2019, Vol. 115 Issue 19, pN.PAG-N.PAG, 5p, 3 Graphs
Abstrakt: Alternating current (electric field) poling (ACP) was applied on [001]-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) single crystal samples with dimensions of 5 × 1.25 × 1.25 mm3 (with electrodes on the 1.25 × 1.25 mm2 surfaces), and the influence of ACP frequency (fACP) was studied. Compared to those from traditional direct (electric field) poling samples, the piezoelectric coefficient (d33) and free dielectric constant (εT330) of ACP samples could gain up to a 67% increase to 3200 pC/N and 10 500, respectively. The influence of fACP was studied on two main aspects: saturated properties and dynamic saturation process. In general, ACP samples with lower fACP had higher saturated d33, εT330, and coupling factor k33, as well as lower dielectric loss and faster saturation speed. The ACP dynamics during the saturation process were studied by measuring the polarization-vs-electric field hysteresis loops (P-E loops). The P-E loops illustrated that the coercive field of ACP samples could be further tuned from 1.84 kV/cm to 3.03 kV/cm by changing fACP (0.1–10 Hz). This work demonstrated the enormous potential of ACP optimization in relaxor-PT single crystal-based low-frequency transducer applications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index