Link prediction in signed social networks based on fuzzy computational model of trust and distrust.

Autor: Girdhar, Nancy, Minz, Sonajharia, Bharadwaj, K. K.
Předmět:
Zdroj: Soft Computing - A Fusion of Foundations, Methodologies & Applications; Nov2019, Vol. 23 Issue 22, p12123-12138, 16p
Abstrakt: Signed social networks are those in which users of the networks are connected with some interdependencies such as agreement/disagreement, liking/disliking, friends/foes, loving/despising, and companions/enemies. Most individuals in signed social networks have many relations in terms of friends, foes, following and followers. All these relations are usually asymmetric and subjective, thus difficult to predict. To resolve the fundamental problem of sparsity in the networks, substantial amount of research work has been dedicated to link prediction; however, very little work deals with the antagonistic behavior of the users while considering the asymmetric and domain-dependent nature of links. This paper is based on the concept that All Relations Are Not Equal and some relations are stronger than other relations. For instance some friends may be acquaintances of an individual, whereas another may be friends who care about him/her. In this paper, a fuzzy computational model is proposed based on trust and distrust, as a decision support tool that dissects relevant and reliable information of the users to distinguish the stronger relations from the weaker ones. Further, we have proposed two different link prediction models based on local information and local–global information to overcome the problem of sparsity in signed social networks. An extensive experimental study is performed on benchmarked synthetic dataset of friends and foes network and publicly available real-world datasets of Epinions and Slashdot. The results obtained are promising and establish the efficacy of our proposed models. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index