Passive Ca(2+) transport and Ca(2+)-dependent K(+) transport in Plasmodium falciparum-infected red cells.

Autor: Staines, H M, Chang, W, Ellory, J C, Tiffert, T, Kirk, K, Lew, V L
Zdroj: Journal of Membrane Biology; Nov1999, Vol. 172 Issue 1, p13-24, 12p
Abstrakt: Previous reports have indicated that Plasmodium falciparum-infected red cells (pRBC) have an increased Ca(2+) permeability. The magnitude of the increase is greater than that normally required to activate the Ca(2+)-dependent K(+) channel (K(Ca) channel) of the red cell membrane. However, there is evidence that this channel remains inactive in pRBC. To clarify this discrepancy, we have reassessed both the functional status of the K(Ca) channel and the Ca(2+) permeability properties of pRBC. For pRBC suspended in media containing Ca(2+), K(Ca) channel activation was elicited by treatment with the Ca(2+) ionophore A23187. In the absence of ionophore the channel remained inactive. In contrast to previous claims, the unidirectional influx of Ca(2+) into pRBC in which the Ca(2+) pump was inhibited by vanadate was found to be within the normal range (30-55 micromol (10(13) cells. hr)(-1)), provided the cells were suspended in glucose-containing media. However, for pRBC in glucose-free media the Ca(2+) influx increased to over 1 mmol (10(13) cells. hr)(-1), almost an order of magnitude higher than that seen in uninfected erythrocytes under equivalent conditions. The pathway responsible for the enhanced influx of Ca(2+) into glucose-deprived pRBC was expressed at approximately 30 hr post-invasion, and was inhibited by Ni(2+). Possible roles for this pathway in pRBC are considered. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index