KSP-SN-2016kf: A Long-rising H-rich Type II Supernova with Unusually High 56Ni Mass Discovered in the KMTNet Supernova Program.

Autor: Niloufar Afsariardchi, Dae-Sik Moon, Maria R. Drout, Santiago González-Gaitán, Yuan Qi Ni, Christopher D. Matzner, Sang Chul Kim, Youngdae Lee, Hong Soo Park, Avishay Gal-Yam, Giuliano Pignata, Bon-Chul Koo, Stuart Ryder, Sang-Mok Cha, Yongseok Lee
Předmět:
Zdroj: Astrophysical Journal; 8/10/2019, Vol. 881 Issue 1, p1-1, 1p
Abstrakt: We present the discovery and the photometric and spectroscopic study of H-rich Type II supernova (SN) KSP-SN-2016kf (SN2017it) observed in the KMTNet Supernova Program in the outskirts of a small irregular galaxy at z ≃ 0.043 within a day of the explosion. Our high-cadence, multi-color (BVI) light curves of the SN show that it has a very long rise time (trise ≃ 20 days in the V band), a moderately luminous peak (MV ≃ −17.6 mag), a notably luminous and flat plateau (MV ≃ −17.4 mag and decay slope s ≃ 0.53 mag per 100 days), and an exceptionally bright radioactive tail. Using the color-dependent bolometric correction to the light curves, we estimate the 56Ni mass powering the observed radioactive tail to be 0.10 ± 0.01 M, making it an H-rich Type II SN with one of the largest 56Ni masses observed to date. The results of our hydrodynamic simulations of the light curves constrain the mass and radius of the progenitor at the explosion to be ∼15 M (evolved from a star with an initial mass of ∼18.8 M) and ∼1040 R, respectively, with the SN explosion energy of ∼1.3 × 1051 erg. The above-average mass of the KSP-SN-2016kf progenitor, together with its low metallicity of obtained from spectroscopic analysis, is indicative of a link between the explosion of high-mass red supergiants and their low-metallicity environment. The early part of the observed light curves shows the presence of excess emission above what is predicted in model calculations, suggesting there is interaction between the ejecta and circumstellar material. We further discuss the implications of the high initial mass of the progenitor and the low-metallicity environment of KSP-SN-2016kf for our understanding of the origin of Type II SNe. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index