Abstrakt: |
More than 60% of housing in South Korea consists of mass constructed apartment neighborhoods. Due to poor quality construction materials and components, the average operative life of apartment buildings is 20 years. The rapid degradation and low maintenance condition of transparent and semi-opaque components, as well as the limited daylight access in the standard apartment layout, are cause for the lower visual comfort of occupants. This research analyzes the improvement in visual comfort for the renovation of an exemplary apartment unit in Seoul, using Building Information Modeling (BIM) and parametric environmental analysis tools. The existing apartment is virtually reconstructed with BIM software. The building model is exported to Computer-Aided Design software to execute parametric daylight analyses through environmental simulation software. An enhanced modular building envelope and apartment layout are developed to reduce the energy demand for heating, cooling, artificial lighting, and to improve visual and thermal comfort. The visual comfort analysis of the refurbished apartment results in average improvements of 15% in terms of Daylight Factor and 30% of daylight autonomy. Therefore, this research proposes, the renovation of aged Korean apartment buildings to enhance daylighting and visual comfort. [ABSTRACT FROM AUTHOR] |