Abstrakt: |
Device-independent security is the gold standard for quantum cryptography: not only is security based entirely on the laws of quantum mechanics, but it holds irrespective of any a priori assumptions on the quantum devices used in a protocol, making it particularly applicable in a quantum-wary environment. While the existence of device-independent protocols for tasks such as randomness expansion and quantum key distribution has recently been established, the underlying proofs of security remain very challenging, yield rather poor key rates, and demand very high quality quantum devices, thus making them all but impossible to implement in practice. We introduce a technique for the analysis of device-independent cryptographic protocols. We provide a flexible protocol and give a security proof that provides quantitative bounds that are asymptotically tight, even in the presence of general quantum adversaries. At a high level our approach amounts to establishing a reduction to the scenario in which the untrusted device operates in an identical and independent way in each round of the protocol. This is achieved by leveraging the sequential nature of the protocol and makes use of a newly developed tool, the "entropy accumulation theorem"" of Dupuis, Fawzi, and Renner [Entropy Accumulation, preprint, 2016]. As concrete applications we give simple and modular security proofs for device-independent quantum key distribution and randomness expansion protocols based on the CHSH inequality. For both tasks, we establish essentially optimal asymptotic key rates and noise tolerance. In view of recent experimental progress, which has culminated in loophole-free Bell tests, it is likely that these protocols can be practically implemented in the near future. [ABSTRACT FROM AUTHOR] |