Dual Silicon Oxycarbide Accelerated Growth of Well‐Ordered Graphitic Networks for Electronic and Thermal Applications.

Autor: Garman, Paul D., Johnson, Jared M., Talesara, Vishank, Yang, Hao, Du, Xinpeng, Pan, Junjie, Zhang, Dan, Yu, Jianfeng, Cabrera, Eusebio, Yen, Ying‐Chieh, Castro, Jose, Lu, Wu, Zhao, Ji‐Cheng, Hwang, Jinwoo, Lee, L. James
Předmět:
Zdroj: Advanced Materials Technologies; May2019, Vol. 4 Issue 5, pN.PAG-N.PAG, 1p
Abstrakt: While effective in circumventing the transfer process of graphene films from metals to insulating substrates, graphene chemical vapor deposition (CVD) methods which grow directly on the surface of insulating substrates suffer from slow growth rates, lack of covalent bonding between both graphene layers within the film and the entire film and its substrate, and the inability to grow films beyond nanoscale thickness. An atmospheric pressure chemical vapor deposition (APCVD) process is described utilizing preplaced silicone rubber and continuously fed tetraethyl orthosilicate (TEOS) as dual silicon oxycarbide (SiOC) sources to facilitate fast surface coverage (30 s) and z‐thickness growth (136 nm min−1) of graphitic coatings consisting of a network of covalently bonded graphene layers directly on quartz while providing strong adhesion between the coating and the substrate via a semiconductive transition layer. This process can produce graphitic networks for a wide range of products including transparent conducting and semiconductive nanoscale graphene films, anisotropic micrometer‐scale coatings with in‐plane thermal conductivity >1000 W m−1 K−1 and standalone flakes with >40 µm thickness for thermal management applications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index