In Situ Thermal Inspection of Automated Fiber Placement Manufacturing.

Autor: Juarez, Peter D., Gregory, Elizabeth D.
Předmět:
Zdroj: AIP Conference Proceedings; 2019, Vol. 2102 Issue 1, p120005-1-120005-10, 10p
Abstrakt: The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems bring is the variability of the deposited prepreg tape layers, which are prone to gaps, overlaps and twists. The current detection method used in industry involves halting fabrication and performing a time consuming visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The innovation discussed in this paper is to use the preheated base layer as a through transmission heat source and inspect the newly added tape layer in situ using a thermographic camera mounted onto the AFP structure. Such a system would not only increase manufacturing throughput by reducing inspection times, but would also aid in process development for new structural designs or material systems. To this end, a small thermal camera was mounted onto an AFP robotic research platform at NASA, and thermal data was collected during typical and experimental layup operations. The data was post processed to reveal defects such as tow overlap/gap, wrinkling, and peel-up. Defects that would have been impossible to detect visually were also revealed in the data, such as poor/loss of adhesion between plies and the effects of vacuum debulking. This paper will cover the results of our experiments, and the recent progress on the data reduction algorithms in preparation for machine learning development. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index