Autor: |
Yang, Bin, Chiu, Tin Lok, Law, Wai Kong, Geng, Hui, Lam, Wai Wang, Leung, Tat Ming, Yiu, Lok Hang, Cheung, Kin Yin, Yu, Siu Ki |
Zdroj: |
Radiological Physics & Technology; Mar2019, Vol. 12 Issue 1, p86-95, 10p |
Abstrakt: |
The aim of the current study was to evaluate the tracking error of the Synchrony Respiratory Tracking system by conducting beam-by-beam analyses to determine the variation in the tracking beams measured during target motion. A moving phantom of in-house design coupled with a two-dimensional (2D) detector array was used to simulate respiratory motion in the superoinferior (SI) and anteroposterior (AP) direction. A styrofoam block with four implanted fiducial markers was placed on top of the detector to enable the fiducial-based respiratory tracking. Measurements were performed with the phantom under either stationary mode or sinusoidal motion of 6-s cycle and 15/20-mm amplitude at SI and AP direction. The measurement data were saved as movie files that were used to calculate the center shift of the beam with 100-ms sampling time. The tracking accuracy of the system was defined as the targeting error, which could be tracked with probability of > 95% (Ep95). The mean ± standard deviation of Ep95 was 0.28 ± 0.08 mm under stationary condition; 0.66 ± 0.23 mm (range: 0.28-1.22 mm) under sinusoidal respiratory motion. The maximum drift of the beam center for all beam paths was 2.7 mm. The tracking accuracy of CyberKnife Synchrony system was successfully evaluated using a moving phantom and 2D detector array; the maximum tracking error was < 1.5 mm for sinusoidal motion of amplitude ≤ 20 mm. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|