Autor: |
DUDEK, ADRIAN W., PAŃKOWSKI, ŁUKASZ, SCHARASCHKIN, VICTOR |
Předmět: |
|
Zdroj: |
Bulletin of the Australian Mathematical Society; Feb2019, Vol. 99 Issue 1, p1-9, 9p |
Abstrakt: |
Lapkova ['On the average number of divisors of reducible quadratic polynomials', J. Number Theory 180 (2017), 710–729] uses a Tauberian theorem to derive an asymptotic formula for the divisor sum $\sum _{n\leq x}d(n(n+v))$ where $v$ is a fixed integer and $d(n)$ denotes the number of divisors of $n$. We reprove this result with additional terms in the asymptotic formula, by investigating the relationship between this divisor sum and the well-known sum $\sum _{n\leq x}d(n)d(n+v)$. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|