Autor: |
Jafari-Soghieh, Fariba, Maleki, Behrooz, Behniafar, Hossein |
Předmět: |
|
Zdroj: |
High Performance Polymers; Feb2019, Vol. 31 Issue 1, p24-31, 8p |
Abstrakt: |
In this work, the effects of dendrimer-functionalized magnetic iron oxide nanoparticles (Fe3O4@D-NH2) on improving thermal and mechanical properties in epoxy networks (ENs) are investigated. Magnetic iron oxide nanoparticles are prepared by coprecipitation of iron (II) chloride tetrahydrate with iron (III) chloride hexahydrate. Poly(amido-amine) dendrimer is synthesized by Michael addition reaction from diethylenetriamine with methyl acrylate. The fabricated dendrimer has been used to stabilize and functionalize magnetic nanoparticles. Then, magnetic iron oxide nanoparticles are encapsulated within the dendrimer and subsequently loaded into diglycidyl ether of bisphenol A (DGEBA) epoxy resin in two different contents, that is, 5 and 10 wt%. The amine groups of dendrimer-functionalized magnetic iron oxide nanoparticles allow them to be covalently linked to the polymer matrix alongside the main amine hardener. The resulting epoxy/magnetic iron oxide nanocomposites are thoroughly characterized by X-ray diffraction analysis, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Probing the thermal behaviors of the epoxy/magnetic iron oxide nanocomposites by thermogravimetric analysis indicated that the temperature of 10% decomposition and the temperatures of the maximum decomposition rate values of Fe3O4@D-NH2@EN series increased up to 20 and 10°C, respectively. Dynamic mechanical thermal analysis also indicated that the organo-magnetic iron oxide nanoparticles can lead to an excellent interaction between the nanoparticles and the resulting DGEBA/isophorone diamine ENs. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|