Autor: |
Berdja, Mohand, Hamid, Abdelkader, M'ahmed, Cyril, Sari, Osmann |
Předmět: |
|
Zdroj: |
International Journal of Energy Research; Jan2019, Vol. 43 Issue 1, p231-242, 12p, 3 Diagrams, 5 Charts, 6 Graphs |
Abstrakt: |
Summary: The present study aims to develop an approach to define the optimal dimensions of a phase change material (PCM) packed bed heat exchanger used as a cold thermal energy storage system in a conventional refrigerator. The heat exchanger is used to extend the daily refrigerator downtime and to ensure effective temperature control to contribute to the improved performance of the refrigerator. The mathematical model has been developed according to the technical characteristics and operating conditions of the refrigerator, the technical characteristics of the ventilator, and the thermo‐physical properties of the PCM. The model parameters that have been analyzed are the PCM melting time, air velocity range for tolerable efficient operating conditions, and the pressure drop through the PCM heat exchanger. As a case study, the approach was applied to a 600‐L conventional refrigerator equipped with a 63‐W ventilator. It has been found that over the tolerated velocity range of [2.5‐3.7 m/s], the optimal dimensions of the PCM heat exchanger are defined for an optimal velocity of 3.495 m/s. This is equivalent to an optimum sphere diameter of 0.071 m, a PCM heat exchanger length of 0.213 m, and a width of 0.148 m. The PCM heat exchanger ensures an extended compressor downtime of 12.6 hours for an ice‐PCM mass of 7.15 kg and occupies only 1.2% of the useful volume of the refrigerator. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|