Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women.
Autor: | Mörkl, S., Lackner, S., Meinitzer, A., Mangge, H., Lehofer, M., Halwachs, B., Gorkiewicz, G., Kashofer, K., Painold, A., Holl, A. K., Bengesser, S. A., Müller, W., Holzer, P., Holasek, S. J. |
---|---|
Předmět: |
INTESTINAL physiology
ANOREXIA nervosa ATHLETES BLOOD proteins BODY weight BUTYRIC acid CLOSTRIDIA DIET DNA ENZYME-linked immunosorbent assay CARBOHYDRATE content of food SODIUM content of food GLOBULINS INGESTION OBESITY DIETARY proteins VITAMIN B12 WOMEN GUT microbiome EFFECT sizes (Statistics) BODY mass index CROSS-sectional method |
Zdroj: | European Journal of Nutrition; Dec2018, Vol. 57 Issue 8, p2985-2997, 13p, 4 Charts, 2 Graphs |
Abstrakt: | Purpose: Increased gut permeability causes the trespass of antigens into the blood stream which leads to inflammation. Gut permeability reflected by serum zonulin and diversity of the gut microbiome were investigated in this cross-sectional study involving female study participants with different activity and BMI levels.Methods: 102 women were included (BMI range 13.24-46.89 kg m−2): Anorexia nervosa patients (n = 17), athletes (n = 20), normal weight (n = 25), overweight (n = 21) and obese women (n = 19). DNA was extracted from stool samples and subjected to 16S rRNA gene analysis (V1-V2). Quantitative Insights Into Microbial Ecology (QIIME) was used to analyze data. Zonulin was measured with ELISA. Nutrient intake was assessed by repeated 24-h dietary recalls. We used the median of serum zonulin concentration to divide our participants into a “high-zonulin” (> 53.64 ng/ml) and “low-zonulin” (< 53.64 ng/ml) group.Results: The alpha-diversity (Shannon Index, Simpson Index, equitability) and beta-diversity (unweighted and weighted UniFrac distances) of the gut microbiome were not significantly different between the groups. Zonulin concentrations correlated significantly with total calorie-, protein-, carbohydrate-, sodium- and vitamin B12 intake. Linear discriminant analysis effect size (LEfSe) identified Ruminococcaceae (LDA = 4.163, p = 0.003) and Faecalibacterium (LDA = 4.151, p = 0.0002) as significantly more abundant in the low zonulin group.Conclusion: Butyrate-producing gut bacteria such as Faecalibacteria could decrease gut permeability and lower inflammation. The diversity of the gut microbiota in women does not seem to be correlated with the serum zonulin concentration. Further interventional studies are needed to investigate gut mucosal permeability and the gut microbiome in the context of dietary factors. [ABSTRACT FROM AUTHOR] |
Databáze: | Complementary Index |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |