Brain antioxidant systems in human methamphetamine users.

Autor: Mireki, Anna, Fitzmaurice, Paul, Lee Ang, Kalasinsky, Kathryn S., Peretti, Frank J., Aiken, Sally S., Wickham, Dennis J., Sherwin, Allan, Nobrega, José N., Forman, Henry J., Kish, Stephen J.
Předmět:
Zdroj: Journal of Neurochemistry; 6/15/2004, Vol. 89 Issue 6, p1396-1408, 13p
Abstrakt: Animal data suggest that the widely abused psychostimulant methamphetamine can damage brain dopamine neurones by causing dopamine-dependent oxidative stress; however, the relevance to human methamphetamine users is unclear. We measured levels of key antioxidant defences [reduced (GSH) and oxidized (GSSG) glutathione, six major GSH system enzymes, copper­zinc superoxide dismutase (CuZnSOD), uric acid] that are often altered after exposure to oxidative stress, in autopsied brain of human methamphetamine users and matched controls. Changes in the total (n 1/4 20) meth- amphetamine group were limited to the dopamine-rich caudate (the striatal subdivision with the most severe dopamine loss) in which only activity of CuZnSOD (+ 14%) and GSSG levels (+ 58%) were changed. In the six methamphetamine users with severe (- 72 to ) 97%) caudate dopamine loss, caudate CuZnSOD activity (+ 20%) and uric acid levels (+ 63%) were increased with a trend for decreased () 35%) GSH concentration. Our data suggest that brain levels of many antioxidant systems are preserved in methampheta- mine users and that GSH depletion, commonly observed during severe oxidative stress, might occur only with severe dopamine loss. Increased CuZnSOD and uric acid might reflect compensatory responses to oxidative stress. Future studies are necessary to establish whether these changes are associated with oxidative brain damage in human metham- phetamine users. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index